Appendix B
Summary of Human Clinical Trials of Foodborne Pathogens

Potential Surrogate Pathogens for <i>E. coli</i> O157:H7 (strain or serotype)	Number of Dose Groups	Total Number of Human Volunteers	Lowest Dose Tested and with Illness	Reference
1. S. dysenteriae (M131) ^a	4	30 ^b	10, 10	Levine et al. 1973
2. S. dysenteriae (A-1) ^c	2	10	$2x10^2, 2x10^2$	Levine et al. 1973
3. <i>S. flexneri</i> (2457T) ^d	5	43	$10^4, 10^4$	DuPont et al. 1969
4. S. flexneri (2457T)	4	197	$10^5, 10^5$	DuPont et al. 1972
5. S. sonnei (53G) ^e	1	20, 38	500, 500	DuPont et al. 1989
6. Enteropathogenic <i>E. coli</i> wild type (O111:NM, B1718) ^f + bicarbonate	3	13 ^g	$5x10^8, 5x10^8$	Bieber et al. 1998
7. Enteropathogenic <i>E. coli</i> (O142:H6) ^h + bicarbonate	3	15 ⁱ	$10^6, 10^6$	Levine et al. 1978
8. Enteropathogenic <i>E. coli</i> (O128:H6) ^j + bicarbonate	3	15	Avirulent at 10 ⁶⁻¹⁰	Levine et al. 1978
9. Enteropathogenic <i>E. coli</i> (O127:H6) ^k + bicarbonate	2	9	$10^6, 10^{10}$	Levine et al. 1978
10. Enterotoxigenic <i>E. coli</i> (O78:H11) ¹ + bicarbonate	2	14 ^m	$10^6, 10^6$	Evans et al. 1978
11. Enterotoxigenic <i>E. coli</i> (non-typable) ⁿ	3	14°	$10^6, 10^8$	Levine et al. 1977
12. Enterotoxigenic <i>E. coli</i> (O148:H28) ^p	2	17 ^q	$10^6, 10^6$	Levine et al. 1979
13. Enterotoxigenic <i>E. coli</i> (O25:NM) ^r	1	6°	10 ⁹ , 10 ⁹	Levine et al. 1979

Potential Surrogate Pathogens for <i>E. coli</i> O157:H7 (strain or serotype)	Number of Dose Groups	Total Number of Human Volunteers	Lowest Dose Tested and with Illness	Reference
14. Infant diarrheal <i>E. coli</i> (O111, B4, H)	4	46 ^s	$10^6, 10^6$	June et al. 1953
15. Infant diarrheal <i>E. coli</i> (O111, B4, H)	4	46 ^s	$10^8, 10^8$	June et al. 1953
16. Infant diarrheal <i>E. coli</i> (O111, B5)	1	1 ^t	$10^8, 10^8$	Ferguson and June 1952, citing Neter 1950
17. Infant diarrheal <i>E. coli</i> (O111, B5)	1	6	10 ⁹ , 10 ⁹	Ferguson and June 1952, citing Kirby 1950
18. Infant diarrheal <i>E. coli</i> (O111, B5)	1	3	Avirulent at 10 ¹⁰	Ferguson and June 1952, citing Kirby 1950
19. Commensal E. coli	2	19	Avirulent at ~10 ¹⁰	June et al. 1953
20. Commensal <i>E. coli</i> ^u + bicarbonate	1	4	Avirulent at 10 ¹⁰	Levine et al. 1978

^aIsolated from feces of patient in Guatemala with severe dysentery from 1970 pandemic and administered in milk.

^bFasting male prison volunteers.

^cIsolated from feces of patient in Guatemala with mild dysentery and administered in milk.

^dIsolated from feces of patient in Japan and administered in milk.

^eIsolated from feces of 5-year-old patient in Japan and administered in milk.

^fIsolated and administered in phosphate buffered saline with sodium bicarbonate.

^gFasting volunteers, 18 to 48 years of age.

^hIsolate infant diarrheal strain from UK hospitals (Glasgow, E851/71) and administered with bicarbonate in saline; virulent at each of 3 doses administered.

ⁱHealthy adult volunteers, mean age 24 years, 90-minute fast pre- and post-treatment.

^jIsolate infant diarrheal strain from UK hospitals (Teesside, E74/68) and administered with bicarbonate in saline; avirulent in 15 healthy adults tested.

^kIsolate infant diarrheal strain from UK residential nursery (Taunton, E2348/69) and administered with bicarbonate in saline; virulent at 1 of 2 doses administered.

¹Isolated from severe non-Vibrio cholera case in Bangladesh.

^mMale and female student volunteers, mean age 23.

ⁿIsolated from physician traveling in Mexico with traveler's diarrhea and administered in milk with 2.5 hour fast intervals before and after treatment.

[°]Student volunteers, 18 to 29 years of age.

^pIsolated from U.S. soldier in Vietnam with diarrhea and administered with bicarbonate in buffer.

^qHealthy adult volunteers, mostly students, mean age 25, range 18 to 41 years of age.

^rIsolated from physician traveling in Mexico with traveler's diarrhea and administered in milk with 2.5 hour fast intervals before and after treatment.

^sPresumably fasting male prison volunteers, 16 to 48 years of age.

^tTwo-month old infant administered 10⁸ organisms and developed diarrhea and weight loss within 24 hours.

^uNonpathogenic isolate from healthy laboratory scientist, administered in bicarbonate at 10¹⁰ in saline; avirulent in all four volunteers.

REFERENCES

- Bieber, D., S.W. Ramer, C.-Y. Wu, W.J. Murray, T. Tobe, R. Fernandez, and G.K. Schoolnik. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic *Escherichia coli*. Science 280:2114-2118.
- Dupont, H.L., R.B. Hornick, A.T. Dawkins, M.J. Snyder, and S.B. Formal. 1969. The response of man to virulent *Shigella flexneri* 2a. J Infect Dis 119:296-299.
- Dupont, H.L., R.B. Hornick, M.J. Snyder, J.P. Libonati, S.B. Formal, and E.J. Gangarosa. 1972. Immunity in Shigellosis II. Protection induced by oral live vaccine or primary infection. J Infect Dis 125(1):12-16.
- DuPont, H.L., M.M. Levine, R.B. Hornick, and S.B. Formal. 1989. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159(6):1126-1128.
- Evans, D.G., D.J. Evans, Jr., W.S. Tjoa, and H.L. Dupont. 1978. Detection and characterization of colonization factor of enterotoxigenic *Escherichia coli* isolated from adults with diarrhea. Infect Immun 19:727-736.
- Ferguson, W.W., and R.C. June. 1952. Experiments on feeding adult volunteers with *Escherichia coli* 111, B5, a coliform organism associated with infant diarrhea. Am J Hyg 55(2):155-169.
- June, R.C., W.W. Ferguson, and M.T. Worfel. 1953. Experiments in feeding adult volunteers with *Escherichia coli* 55, B5, a coliform organism associated with infant diarrhea. Am J Hyg 57:222-236.
- Levine, M.M., H.L. DuPont, S.B. Formal, R.B. Hornick, A. Takeuchi, E.J. Gangarosa, M.J. Snyder, and J.P. Libonati. 1973. Pathogenesis of *Shigella dysenteriae* 1 (Shiga) dysentery. J Infect Dis 127(3):261-270.
- Levine, M.M., E.S. Caplan, D. Waterman, R.A. Cash, R.B. Hornick, and M.J. Snyder. 1977. Diarrhea caused by *Escherichia coli* that produce only heat-stable enterotoxin. Infect Immun 17(1):78-82.
- Levine, M.M., E.J. Bergquist, D.R. Nalin, D.H. Waterman, R.B. Hornick, C.R. Young, and S. Sotman. 1978. *Escherichia coli* strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1(8074):1119-1122.
- Levine, M.M., D.R. Nalin, D.L. Hoover, E.J. Bergquist, R.B. Hornick, and C.R. Young. 1979. Immunity to enterotoxigenic *Escherichia coli*. Infect Immun 23(3):729-736.